Прогнозирование спроса




Скачать 450.86 Kb.
страница1/3
Дата09.05.2016
Размер450.86 Kb.
  1   2   3

Логистика для МВА Прогнозирование спроса

ПРОГНОЗИРОВАНИЕ СПРОСА

Планирование и контроль рабочих процессов в логистике требуют точной оценки тех объемов продукции, с которыми будут выполняться соответствующие операции. Эта оценка обычно выполняется в форме прогнозов продаж или спроса. Впрочем, за прогнозирование спроса несут ответственность не только менеджеры по логистике. Скорее всего, эта задача будет выполняться в отделе маркетинга, экономического планирования или в специальной проектной группе. При определенных условиях, особенно при краткосрочном планировании – например, при планировании запасов или календарном планировании перевозок, – менеджеры по логистике находят необходимым взять эту функцию на себя. Следовательно, эта глава будет посвящена обзору тех методик планирования, которые прямо подходят именно для планирования и контроля рабочих процессов в логистике.

Обсуждение будет касаться преимущественно прогнозирования спроса, что является важным исходным пунктом при планировании и контроле процессов в логистике. С другой стороны, все те методики, которые будут обсуждаться в этой главе, подходят и для определенных типов планирования, таких как планирование запасов, снабжения (или закупок), контроль затрат, прогнозирование цен, затрат и пр.

ПРИРОДА ПРОБЛЕМЫ

Прогнозирование спроса – важнейшая управленческая функция любой компании, которая занимается производством и продажами товаров и услуг. Правильное прогнозирование – это основа успешного планирования и контроля всех основных функциональных подразделений компании – производства, логистики, маркетинга, финансов. Уровень спроса, его структура и временные колебания обуславливают масштабы производства, объем привлеченных инвестиций и в целом – структуру бизнеса компании.

Каждое функциональное подразделение имеет собственные особенности и потребности в прогнозировании. Конкретно в логистике прогнозирование касается таких вопросов, как пространственное и временное прогнозирование спроса, определение степени вариативности спроса.

Пространственное и временное прогнозирование спроса

Временное прогнозирование – это общий момент при прогнозировании любых видов спроса. Изменение спроса во времени является результатом общего роста или снижения спроса, сезонных колебаний спроса, а также случайных колебаний спроса, которые обуславливается множеством факторов. Именно эти три аспекта учитываются при краткосрочном прогнозировании в большинстве случаев.

Помимо временного измерения спрос имеет также и пространственное измерение. Менеджер по сбыту, в функции которого входит управление логистикой товара, должен знать не только КОГДА, но и ГДЕ может возникнуть спрос на товар. Пространственное прогнозирование спроса требуется для определения оптимального местоположения складов, оптимального распределения запасов по складской сети, эффективного управления транспортными потоками.

Методики временного прогнозирования следует наилучшим образом адаптировать под структурные особенности бизнеса и спроса. Например, временное прогнозирование можно осуществлять сперва на уровне фирмы в целом, а затем пропорционально «делить» прогноз по региональным подразделениям (прогнозирование «сверху-вниз»). Или наоборот, сперва прогнозировать спрос на уровне региональных подразделений, а затем агрегировать полученные результаты на уровне фирмы в целом (прогнозирование «снизу-вверх»).



Регулярный и нерегулярный спрос

Менеджеры по сбыту, как правило, объединяют товары по группам для того, чтобы дифференцировать обслуживание запасов или просто для того,

чтобы было удобнее ими управлять. Эти группы, а также отдельные товары имеют разный характер спроса. Если спрос регулярный, устойчивый, то его можно разложить на три составляющие:


  • тренд (есть или нет);

  • сезонные колебания (есть или нет);

  • случайные колебания (как правило, есть).

Хорошо известные и апробированные методики прогнозирования, как правило, применяются для прогнозирования именно регулярного спроса, который обычно бывает на ходовые и перспективные товары.

С другой стороны, в практике продаж всегда попадаются товары, спрос на которые крайне неустойчив. Прогнозировать продажи таких товаров крайне сложно, если вообще возможно. Спрос на такие товары называется неустойчивым, или нерегулярным. К числу таких товаров относят, например, продукцию, которая уже практически снята с производства и востребована лишь небольшим числом покупателей, которые покупают ее по инерции или по старой памяти. Или, например, продукцию, продажи которой зависят от продаж и потребления другой продукции и т.д.

В некоторых случаях товары с нерегулярным спросом достигают 50% от общего объема продаваемых товаров. В этом случае прогнозирование продаж представляет для системы логистики особенно трудную проблему.



Рис. 1а. Регулярный спрос с постоянным средним уровнем колебаний



Рис 1b Регулярный спрос с растущим трендом



Рис 1c. Регулярный спрос с растущим трендом и сезонностью



Рис. 2. Нерегулярный спрос

Производный и независимый спрос

В большинстве случаев спрос, который генерируется большим количеством покупателей (например, домохозяйств или физических лиц), каждый из которых приобретает лишь небольшое количество товара, является независимым. Такой спрос является массовым, а потому достаточно устойчивым и хорошо прогнозируемым. Он имеет определенные закономерности – общий рост или понижение (тренд), сезонные изменения, – однако все эти закономерности легко просчитываются по результатам обработки статистики продаж в предыдущие периоды.

Производный спрос – это спрос, который генерируется исходя из потребностей самого бизнеса компании. Например, это может быть спрос на сырье или материалы, комплектующие, запчасти, необходимые для нормального обеспечения производственного процесса. В этом случае для расчета потребностей в материалах требуется знать не только план производства готовой продукции, но также и то, из каких составляющих будет изготавливаться эта продукция, какие производственные операции будут при этом выполняться и когда потребуется та или иная поставка конкретных наименований изделий.

Пример. Отдел электрооборудования компании Lear-Siegler производит серию маломощных электродвигателей для промышленных потребителей, которые используют их в таких видах готовой продукции, как очистительные и шлифовальные машины. Хотя это и не очень сложное изделие, каждый электродвигатель включает в себя от 50 до 100 деталей. Календарный план производства двигателей составляется на основе заказов, которые поступают от промышленных фирм с поставкой на какую-нибудь дату в будущем, а также прогноза прямых продаж стандартных электродвигателей прямо со склада производителя. План производства составляется на три месяца вперед. В нем указывается, какие двигатели следует производить, когда и в каком количестве. Менеджер по закупкам должен следить, чтобы все компоненты, необходимые для производства, были своевременно в наличии в соответствии с планом производства.

Существует два подхода к планированию закупок материалов и компонентов, необходимых для производства:



  1. Прогноз тех изделий и материалов, которые используются при производстве большинства электродвигателей (медная проволока, листовая сталь, краска), составляется на основе обобщенных данных об их потреблении. Затем они закупаются в необходимых количествах для создания запасов на складе сырья и материалов.

  2. Те компоненты, которые стоят дорого или нужны под индивидуальные заказы потребителей, закупаются в соответствии с календарным графиком производства. В данном случае такими компонентами являются ось ротора и подшипники. Закупки этих изделий осуществляются в соответствии с расчетами, которые строятся на основе календарного производственного плана и спецификаций материалов по каждому электродвигателю.

Допустим, что в предстоящем месяце планируется произвести электродвигатели трех разных моделей в объеме 200, 300 и 400 шт. соответственно. Во всех моделях используется одинаковая ось ротора, но в моделях 1 и 2 требуется два подшипника, а в модели 3 – только один подшипник. Следовательно, требуется закупить 900 роторных осей и 1400 подшипников:

1200 + 1300 + 1400 = 900 роторных осей

2200 + 2300 + 1400 = 1400 подшипников

Этот план закупок получен по данным спецификаций материалов по каждой модели электродвигателя и планам производства каждой модели в предстоящем месяце.

Методики прогнозирования, как правило, применяются при прогнозировании независимого спроса. Однако производный спрос может быть оценен только при наличии прогноза независимого спроса на конечную продукцию. Далее при прогнозе производного спроса учитываются такие факторы, как тренды, сезонные и случайные колебания спроса, что позволяет планировать закупки необходимых материалов и комплектующих с большей точностью.

МЕТОДИКИ ПРОГНОЗИРОВАНИЯ

Существует определенное количество методик прогнозирования, которые могут быть использованы в реальной практике коммерческих фирм. Модели прогнозирования можно разбить на три группы:



  • качественные;

  • статистические;

  • факторные.

Эти три группы различаются по степени точности прогноза в долгосрочном и краткосрочном периодах, степени сложности и трудоемкости при расчетах, а также по источнику, из которого черпаются исходные данные для прогнозирования (например, экспертные оценки, маркетинговые исследования, статистика и пр.).

Качественные методы

В качественных методах прогнозирование основывается на мнениях и суждениях экспертов, интуиции сотрудников, результатах маркетинговых исследований или сравнении с деятельностью конкурирующих предприятий. Информация такого рода, как правило, не содержит в себе количественных данных, является приблизительной и часто носит субъективный характер.

Разумеется, что из-за этого качественные методы не отвечают строгим научным критериям. Однако в случаях, когда статистические данные не доступны или нет уверенности, что статистические закономерности сохранятся в будущем, у качественных методов просто нет альтернатив. И хотя эти методы нельзя практически стандартизировать и добиться от них высокой точности прогноза, однако они с успехом могут использоваться при оценке рыночных перспектив нового продукта или новой технологии, прогнозировании изменений в законодательстве или правительственной политики и т.д. Как правило, качественные методы используются при средне- и долгосрочном прогнозировании.

Статистические методы

В случаях, когда фирме доступен достаточно большой объем статистических данных и есть уверенность, что тренд или сезонные колебания достаточно стабильны, то статистические методы показывают высокую эффективность при составлении краткосрочных прогнозов спроса на товары. Главной предпосылкой статистических методик является предположение, что будущее является продолжением прошлого. Поскольку статистические данные, как правило, носят количественный характер, то при прогнозировании широко используются различные математические и количественные модели, заимствованные, прежде всего, из области статистики. Точность прогноза на период до 6 месяцев обычно является достаточно высокой. Это объясняется тем, что в краткосрочном периоде тенденции спроса обычно достаточно устойчивы.

Статистические прогнозы напрямую зависят от имеющихся исходных данных. Чем обширнее статистическая база, тем точнее прогноз. По мере поступления новых статистических данных постепенно меняется и прогноз на будущее. Вместе с тем при переломе тенденции статистический прогноз сигнализирует об этом с некоторым запозданием. Это является серьезным недостатком статистических моделей и накладывает на них определенные ограничения при практическом использовании.

Факторные методы

Главной предпосылкой для использования факторных моделей при прогнозировании спроса является тот факт, что динамика спроса обусловлена целым рядом взаимно обусловленных причин, которые иногда можно выявить и проанализировать. Например, на уровень спроса положительно влияет уровень потребительского обслуживания. В этом случае при целенаправленной политике фирмы по повышению уровня сервиса можно ожидать увеличения объема спроса. В таких случаях говорят, что уровень обслуживания потребителей является фактором роста уровня спроса. В случае, когда удается полно и качественно выявить все причинно-следственные связи и описать их, факторные модели позволяют прогнозировать с высокой степенью точности будущие изменения спроса в средне- и долгосрочном периодах.

Факторные модели имеют несколько разновидностей


  • статистические – например, регрессионные или эконометрические модели;

  • дескриптивные – например, при описании объекта по методу «черного ящика», описании жизненного цикла объекта или компьютерном имитационном моделировании.

При прогнозировании результирующих показателей используются в той или иной степени статистические данные по факторным показателям. И на основании прогноза факторных показателей выстраивается прогноз результирующего показателя.

Основной проблемой, затрудняющей применение факторных моделей на практике, является то, что найти, выявить и описать причинно-следственные связи достаточно сложно. Даже если некоторые такие взаимосвязи выявлены, часто оказывается, что в рассматриваемом периоде эти связи не являются определяющими при прогнозировании спроса. Для качественного прогноза с помощью факторной модели требуется выявить и описать все наиболее важные и значимые факторы влияния, но именно это как раз и бывает сложно сделать. Кроме того, для прогноза необходимо иметь статические данные не только по результирующим, но и по факторным показателям, причем за период не менее чем 6 месяцев. Из этих проблем точность факторных моделей, к сожалению, оказывается не слишком высока.



Таблица 1. Методики прогнозирования спроса

Методика, описание, интервал прогнозирования

Дэльфи

Группа экспертов опрашивается с помощью нескольких опросных листов. Результаты одного опроса используются для подготовки следующего опроса. Вся информация, необходимая для прогнозирования, должна быть доступна всем экспертам: владеющие информацией должны передать ее тем, кто не владеет ею. Техника исключает «стадный эффект», когда мнение одних экспертов влияет на мнение других экспертов.



Интервал прогнозирования: среднесрочный

Маркетинговые исследования

Систематические, формализованные и целенаправленные процедуры, направленные на совершенствование и проверку гипотез о реальных рынках.



Интервал прогнозирования: среднесрочный

Панельные исследования

Методика базируется на предположении, что несколько экспертов обеспечивают лучший прогноз, чем один эксперт. Между ними нет никаких секретов, и наоборот, коммуникации поощряются. Прогноз иногда зависит от влияния социальных факторов и может не отражать настоящего консенсуса.



Интервал прогнозирования: среднесрочный

Оценки торгового персонала

Мнения торгового персонала фирмы могут иметь ценность, поскольку продавцы ближе к потребителям и имеют все возможности оценить их потребности и спрос.



Интервал прогнозирования: краткосрочный и среднесрочный

Метод сценариев

На основании личных мнений, оценок, видения ситуации и, если возможно, фактов строится несколько сценариев будущих продаж. В основе этих сценариев лежит простое воображение, или видение того или иного сценария будущего. Этот метод, конечно, является ненаучным.



Интервал прогнозирования: среднесрочный и долгосрочный

Историческая аналогия

Прогноз продаж основывается на сравнении с выведением на рынок и ростом продаж аналогичных продуктов, о которых уже накоплена соответствующая статистика.



Интервал прогнозирования: среднесрочный и долгосрочный

Скользящие средние

Значения скользящих средних получаются как средняя арифметическая или взвешенная величина, рассчитываемая по некоторому количеству значений из временного ряда. Количество значений временного ряда, которые используется при расчете скользящей средней, выбираются так, чтобы определить основную тенденцию и удалить случайные и сезонные колебания спроса.



Интервал прогнозирования: краткосрочный

Экспоненциальное сглаживание

Методика экспоненциального сглаживания похожа на методику скользящих средних, только последние наблюдения имеют больший вес, чем прошлые наблюдения. Новый прогноз – это старый прогноз плюс некоторая доля последней ошибки прогнозирования. Более сложные модели экспоненциального сглаживания учитывают также тренд и сезонные колебания.



Интервал прогнозирования: краткосрочный

Классический анализ временных рядов

Метод декомпозиции временных рядов на тренд, сезонную и случайную составляющую. Это прекрасный инструмент, с помощью которого можно прогнозировать спрос на период от 3 до 12 месяцев.



Интервал прогнозирования: краткосрочный и среднесрочный

Проекция тренда

Эта методика позволяет выявить тренд с помощью математического уравнения и затем спроецировать его в будущее. Существует несколько вариантов методики: полиномы, логарифмы и пр.



Интервал прогнозирования: краткосрочный и среднесрочный

Метод фокусирования

Позволяет протестировать некоторое количество простых способов прогнозирования, чтобы проверить, какое из них наиболее дает наиболее точный прогноз по данным за 3-месячный период. Имитационное моделирование позволяет выполнить такой тест и проверить различные стратегии прогнозирования временного ряда.



Интервал прогнозирования: среднесрочный

Спектральный анализ

В модели предпринимается попытка разбить временной ряд на несколько фундаментальных компонентов.






ПРОГНОЗИРОВАНИЕ СПРОСА В ЛОГИСТИКЕ

В основном в сфере логистике требуется лишь небольшое количество методик прогнозирования. Поскольку прогнозы – особенно прогноз продаж, – необходимы различным сегментам организации, то прогнозирование обычно сосредотачивается в отделе маркетинга, плановом отделе или отделе экономического анализа. Долгосрочные и среднесрочные прогнозы часто составляются в отделе логистики. Однако потребности отдела логистики обычно ограничиваются краткосрочными прогнозами, которые необходимы для планирования запасов, календарного планирования перевозок, планирования загрузки складских помещений и т.п. Исключение составляют только потребности в каких-то специальных долгосрочных прогнозах.

Учитывая степень сложности, полезности, достоверности и доступности информации, лишь часть методик из тех, которые перечислены в таблице 1, имеет смысл рассматривать подробно. Многочисленные исследования показали, что «простые» модели анализа временных рядов позволяют прогнозировать продажи не хуже или даже еще лучше, чем более сложные и трудоемкие методики. Модель временного ряда относится к разряду факторных моделей и является наиболее распространенной в практике прогнозирования. В целом, усложнение модели прогнозирования не обеспечивает увеличения точности прогноза. Поэтому дальше будут рассмотрены только три наиболее популярные методики анализа временного ряда: экспоненциальное сглаживание, классический анализ временных рядов и множественный регрессионный анализ.

Экспоненциальное сглаживание

Возможно, что экспоненциальное сглаживание – это наиболее популярный метод прогнозирования. Он очень прост, требует минимальных исходных данных, обладает высокой точностью и легко адаптируется под конкретные задачи прогнозирования. Метод является вариантом методики расчета скользящих средних, при котором результаты прошлых наблюдений имеют меньший вес, чем результаты новых, более свежих наблюдений за продажами.

Такая схема распределения весовых коэффициентов может быть задана простым уравнением, в котором прогноз на будущий период составляется на основе прогноза предыдущего периода и фактических продаж в текущем периоде:

НОВЫЙ ПРОГНОЗ = (ФАКТИЧЕСКИЙ СПРОС) + (1 – )(ПРЕДЫДУЩИЙ ПРОГНОЗ)

В этой формуле  – это весовой коэффициент, или сглаживающая постоянная. Коэффициент  варьируется от 0 до 1. Отметим, что все прошлые наблюдения за продажами включены в прогноз предыдущего периода. Таким образом, вся предыдущая история продаж отражена в одном числовом значении прогноза за предыдущий период.

Пример. Допустим, что прогноз спроса в текущем месяце составляет 1000 шт. Фактический спрос в текущем месяце составил 950 шт. Сглаживающая константа составляет  = 0,3. Ожидаемый спрос в следующем месяце определяется по формуле:

Новый прогноз = 0,3950 + 0,71000 = 985 шт.

Этот новый прогноз будет использоваться в формуле для расчета нового прогноза на второй месяц и т.д.

Для удобства расчетов запишем формулу экспоненциального сглаживания в виде следующей модели:



,

где t – текущий временной период; Ft – прогноз продаж на период t; Ft+1 – прогноз продаж на период (t+1);  – константа сглаживания; At – продажи в период t.



Пример. Следующий квартальный временной ряд представляют данные о спросе на продукцию за полтора года:




Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000

F3 = ?




Нам необходимо построить прогноз на третий квартал текущего года. Допустим, что сглаживающая постоянная  = 0,2. Прогноз предыдущего периода рассчитаем как средний уровень спроса в квартал по данным предыдущего года. Следовательно, А0 = (1200 + 700 + 900 + 1100)/4 = 975. Допустим, что прогноз продаж в прошлом году в среднем соответствовал фактическим продажам, т.е. F0 = А0 = 975.

Тогда прогноз на первый квартал текущего года:

F1 = 0,2A0 + (1 – 0,8)F0 = 0,2975 + 0,8975 = 975

Прогноз на второй квартал текущего года:

F2 = 0,2A1 + (1 – 0,8)F1 = 0,21400 + 0,8975 = 1060

Прогноз на третий квартал текущего года:

F3 = 0,2A2 + (1 – 0,8)F2 = 0,21000 + 0,81060 = 1048

В итоге получаем следующие результаты:






Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000

F3 = ?




Прогноз

975

1060

1048




Выбор оптимального значения сглаживающей константы основывается на оценочных суждениях.

  • Чем выше значение константы , тем большее влияние на прогноз оказывают последние наблюдения за фактическими продажами. В результате модель более гибко и быстро реагирует на изменения в продажах. Однако слишком высокий уровень  делает модель слишком «нервной», слишком чутко реагирующей на любой случайное колебание спроса без учета основной тенденции развития.

  • Чем ниже значение константы , тем больший вес в прогнозе имеют прошлые наблюдения за фактическими продажами. В виду этого модель реагирует на изменения в тенденциях развития спроса медленнее, с запозданием. При очень низком значение  модель реагирует на изменения спроса крайне медленно и тяжело, что обеспечивает очень «стабильный» прогноз, но делает его крайне неправдоподобным, не похожим на временной ряд.

Наиболее приемлемые значения константы  варьируются в интервале от 0,01 до 0,3. Более высокие значения  могут использоваться при краткосрочном прогнозировании, когда ожидаются какие-то серьезные изменения на рынке. Например, падение продаж, краткосрочные и агрессивные маркетинговые компании, вывод из продуктовой линии некоторых устаревших продуктов, начало продаж нового продукта, когда нет еще достаточной статистики для прогнозирования спроса и пр.

Основное правило при выборе значения константы : модель должна отображать основную тенденцию в развитии спроса и сглаживать случайные колебания. Такая константа обеспечивает минимальную ошибку прогнозирования.



Корректировка прогноза с учетом тренда

Простое экспоненциальное сглаживание удобно использовать в том случае, если отсутствует устойчивая тенденция к увеличению или уменьшению спроса, т.е. средний уровень спроса достаточно стабилен во времени. Если же в продажах обнаруживается, например, тренд к повышению спроса, то каждый новый прогноз будет устойчиво меньше фактического спроса.

К счастью, прогноз можно откорректировать, введя в методику дополнительную формулу, с помощью которой рассчитывается тренд. Для этого к экспоненциальному уравнению необходимо добавить еще одну формулу, которая будет учитывать тренд:





где St – начальный прогноз в пери од t, Тt – тренд в период t, Ft+1 –прогноз на период t+1 с учетом тренда,  – сглаживающая постоянная для тренда.



Пример. Рассчитаем прогноз на третий квартал текущего года с учетом тренда:




Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000

F3 = ?




Для начала рассчитаем прогноз на первый квартал текущего года. В качестве исходных значений при расчетах будем использовать S0 = 975 (средний спрос за квартал по данным предыдущего года) и T0 = 0 (тренд отсутствует). Допустим, что сглаживающие постоянные  = 0,2 и  = 0,3. Теперь начнем расчеты.

Прогноз на первый квартал текущего года:

S0 = 975, T0 = 0  F1 = 975 + 0 = 975

Прогноз на второй квартал текущего года:

S1 = 0,21400 + 0,8(975 + 0) = 1060

Т1 = 0,3(1 060 – 975) + 0,70 = 25,5

F2 = 1060 + 25,5 = 1085,5

Прогноз на третий квартал текущего года:

S2 = 0,21000 +0,8(1060 + 25,5) = 1068,4

Т2 = 0,3(1068,4 – 1060) + 0,725,5 = 20,37

F2 = 1068,4 + 20,37 = 1088,77

В итоге получаем:






Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000







Прогноз

975

1 086

1 089




Корректировка прогноза с учетом тренда и сезонности

При прогнозировании можно учесть не только тренд, но и сезонные колебания спроса. Прежде чем использовать модель, которая рассмотрена в следующем примере, следует проверить временной ряд на выполнение следующих двух условий:



  1. Сезонные пики и падения спроса должны четко проглядываться на статистическом ряде, т.е. они должны быть больше, чем случайные колебания спроса (так называемый «шум»).

  2. Сезонные пики и падения спроса должны устойчиво повторяться из года в год.

Если эти два условия не соблюдаются, то есть сезонные колебания неустойчивы, незначительны и трудно отличаются от «шума», то использовать модель для точного прогноза спроса на следующий временной период будет крайне трудно. Если условия выполняются и в модели устанавливается высокое значение сглаживающей постоянной, чтобы учитывать большую амплитуду колебаний спроса, то имеет смысл усложнить модель.

В этой новой модели прогноз строится с учетом корректировок тренда и сезонности, которые отображаются в форме индексов. Это позволяет достичь высокой точности прогноза.

Уравнения усложненной модели:







где Тt – тренд в период t, St – начальный прогноз в период t, Ft+1 – прогноз на период t+1 с учетом тренда и сезонности, It –индекс сезонных колебаний в период t, L – временной период, в течение которого совершается полный сезонный цикл,  – сглаживающая постоянная для сезонного индекса.



Пример. Рассчитаем прогноз на третий квартал текущего года с учетом тренда :




Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000

F3 = ?




Для начала рассчитаем прогноз на первый квартал текущего года. В качестве исходных значений при расчетах будем использовать St-1 = 975 (средний спрос за квартал по данным предыдущего года) и Tt-1 = 0 (тренд отсутствует). Допустим, что сглаживающие постоянные  = 0,2 и  = 0,3, а  = 0,4. Теперь начнем расчеты.

Прогноз на первый квартал текущего года:

S0 = 975 и T0 = 0. Тогда:

F1 = (975 + 0)  1,23 = 1200, потому что I1 = 1200 / 975 = 1,23

И тогда:

Прогноз на второй квартал текущего года:

S1 = 0,21400 / 1,23 + 0,8(975 + 0) = 1007,5

I1 = 0,41400 / 1007,5 + 0,61,23 = 1,29

Т1 = 0,3(1007,5 – 975) + 0,70 = 9,75

F2 = (1007,5 + 9,75)0,72 = 730,3, потому что I2 = 700 / 975 = 0,72

Прогноз на третий квартал текущего года:

S2 = 0,21000 / 0,72 +0,8(1007,5 + 9,75) = 1092,4

I2 = 0,41000 / 1092,4 + 0,60,72 = 0,8

Т2 = 0,3(1092,4 – 1007,5) + 0,79,75 = 32,3

F2 = (1092,4 + 32,3)0,92 = 1005, потому что I3 = 900 / 975 = 0,92

В итоге получаем:






Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000







Прогноз

1 200

779

1 005




Ошибка прогнозирования

Поскольку будущее никогда нельзя в точности предугадать по прошлому, то прогноз будущего спроса всегда будет содержать в себе ошибки в той или иной степени. Модель экспоненциального сглаживания прогнозирует средний уровень спроса. Поэтому следует построить модель так, чтобы уменьшить разность между прогнозом и фактическим уровнем спроса. Эта разность называется ошибкой прогнозирования.

Ошибка прогнозирования выражается такими показателями, как среднеквадратическое отклонение, вариация или среднее абсолютное отклонение. Раньше среднее абсолютное отклонение использовалось в качестве основного измерителя ошибки прогнозирования при использовании модели экспоненциального сглаживания. Среднеквадратическое отклонение отвергли из-за того, что рассчитывать его сложнее, чем среднее абсолютное отклонение, и у компьютеров на это просто не хватало памяти. Сейчас у компьютеров достаточно памяти, и теперь среднеквадратическое отклонение используется чаще.

Ошибку прогнозирования можно определить с помощью следующей формулы:

ОШИБКА ПРОГНОЗА = ФАКТИЧЕСКИЙ СПРОС – ПРОГНОЗ СПРОСА

Е
Рис. 3а. Нормальное распределение ошибок прогноза


сли прогноз спроса представляет собой среднее арифметическое фактического спроса, то сумма ошибок прогнозирования за определенное количество временных периодов будет равна нулю. Следовательно, значение ошибки можно отыскать путем суммирования квадратов ошибок прогнозирования, что позволяет избежать взаимного устранения положительных и отрицательных ошибок прогнозирования. Эта сумма делится на количество наблюдений и затем из нее извлекается квадратный корень. Показатель корректируется с уменьшением одной степени свободы, которая теряется при составлении прогноза. В результате, уравнение среднеквадратического отклонения имеет вид:

,

где SE – средняя ошибка прогнозирования; Ai – фактический спрос в период i; Fi – прогноз на период i; N – размер временного ряда.

Ф
Рис. 3б. Скошенное распределение ошибок прогноза
орма распределения ошибок прогнозирования является важной, когда формулируются вероятностные утверждения о степени надежности прогноза. Две типовые формы распределения ошибок прогнозирования показаны на рисунке 3.

Полагая, что модель прогнозирования отражает средние значения фактического спроса достаточно хорошо и отклонения фактических продаж от прогноза относительно невелики по сравнению с абсолютной величиной продаж, то вполне вероятно предположить нормальное распределение ошибок прогнозирования. В тех же случаях, когда ошибка прогнозирования сопоставима по величине с величиной спроса, имеет место скошенное, или усеченное нормальное распределение ошибок прогноза.

Определить тип распределения в конкретной ситуации можно с помощью теста на соответствие критерию согласия хи-квадрат. В качестве альтернативы можно использовать другой тест, с помощью которого можно определить, является ли распределение симметричным (нормальным) или экспоненциальным (разновидность скошенного распределения):

При нормальном распределении около 2% наблюдаемых значений превышают значение, равное сумме среднего и удвоенного значения среднеквадратического отклонения. При экспоненциальном распределении около 2% наблюдаемых значений превышают среднее на величину среднеквадратического отклонения, умноженного на коэффициент 2,75. Следовательно, в первом случае используется нормальное распределение, а во втором случае – экспоненциальное.



Пример. Снова вернемся к нашему примеру. В базовой модели экспоненциального сглаживания были получены следующие результаты:




Квартал

I

II

III

IV

Прошлый год

1 200

700

900

1 100

Текущий год

1 400

1 000

F3 = ?




Прогноз

1 200

779

1 005



  1   2   3


База данных защищена авторским правом ©ekonoom.ru 2016
обратиться к администрации

    Главная страница